

Control del Proceso Educativo ESTADISTICA III MEDIOS A - B y C

7. 5.

Instituto San Lorenzo/Dirección Educación Media

R 01 22.04.02

MEDIDAS DE DISPERSIÓN Y VARIABLE ALEATORIA DISCRETA GUIA 2

Objetivo: Analizar las medidas de dispersión en datos agrupados y no agrupados.

Nombre: Curso: III Medio " " Fecha: /05/2020

INSTRUCCIONES: Realizar cada ejercicio de acuerdo a lo indicado en cada uno de ellos, debes copiar los ejercicios en tu cuaderno de no poder imprimir y desarrollar los ejercicios en el.

VARIANZA Y DESVIACIÓN ESTANDAR.

La **varianza** (s^2) o (σ^2) cuantifica lo alejado que se encuentra cada dato, del valor de la media aritmética.

Para datos no agrupados:

$$s^2 = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n}$$

Hallar la **la varianza y la desviación típica** de la series de números siguientes, para datos no agrupados:

a) 2,3,6,8,11

Para la serie de números $x_1=2$, $x_2=3$, $x_3=6$, $x_4=8$, $x_5=11$ con n=5=N tenemos los siguientes cálculos.

Paso 1: calcular la MEDIA

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
$$\bar{x} = \frac{2 + 3 + 6 + 8 + 11}{5} = 6$$

Paso 2: Calcular la VARIANZA

$$\sigma^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{N} \quad \text{\'o} \quad \sigma^2 = \frac{x_1^2 + x_2^2 + \dots + x_n^2}{N} - \bar{x}^2$$

$$\sigma^2 = \frac{(2 - 6)^2 + (3 - 6)^2 + (6 - 6)^2 + (8 - 6)^2 + (11 - 6)^2}{5} = \frac{54}{5} = 10.8$$

La **desviación estándar (s)** entrega la misma información que la varianza, pero su unidad de medida es compatible con la de la media. Así: $\sigma=\sqrt{\sigma^2}_{o\,(S}=\sqrt{s^2}_{)}$

Control del Proceso Educativo ESTADISTICA III MEDIOS A - B y C

7. 5.

Instituto San Lorenzo/Dirección Educación Media

R 01 22.04.02

Paso 3: Calcular la **DESVIACION ESTANDAR O TIPICA**

$$\sigma = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{N}}$$
$$\sigma = \sqrt{10.8} = 3.28$$

El **coeficiente de variación** (CV) relaciona la desviación estándar y la media, y sirve para comparar distribuciones. A mayor CV, mayor dispersión. Se suele expresar en porcentaje.

$$CV = \frac{S}{X} \cdot 100$$

Paso 4: calcular el (CV)

$$CV = \frac{3,28}{6} \times 100 = 54,66$$

AHORA APLICA TU SI ENTENDISTE:

Hallar la la varianza y la desviación típica de la series de números siguientes:

1) 12,6,7,3,15,10,18,5

Control del Proceso Educativo **ESTADISTICA** III MEDIOS A - B y C

5.

Instituto San Lorenzo/Dirección Educación Media

R 01 22.04.02

Ahora para datos Agrupados.

Para datos agrupados:

$$s^{2} = \frac{\sum_{i=1}^{N} \left[\left(x_{i} - \overline{x} \right)^{2} \cdot f_{i} \right]}{n}$$

Ejemplo: Analiza cómo calcular la desviación estándar de una muestra de 40 estudiantes, utilizando una tabla de frecuencias. Luego, responde.

Resultados de una prueba de Matemática						
Calificación	$M_{c}(x_{i})$	f	$x_i \cdot f_i$	$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$	$\left(x_{i}-\overline{x}\right)^{2}\cdot f_{i}$
[1,0; 2,0[1,5	2	3	-3,3	10,89	21,78
[2,0; 3,0[2,5	2	5	-2,3	5,29	10,58
[3,0; 4,0[3,5	3	10,5	-1,3	1,69	5,07
[4,0; 5,0[4,5	14	63	-0,3	0,09	1,26
[5,0; 6,0[5,5	13	71,5	0,7	0,49	6,37
[6,0; 7,0[6,5	6	39	1,7	2,89	17,34
Total		40		192		62,4

Paso 1: Calcular el promedio.

De la tabla, se obtuvo que $\bar{x} = \frac{192}{40} = 4.8$. Con este valor, se tiene que:

Paso 2: Calcular la VARIANZA y LA DESVIACION ESTANDAR

$$s^{2} = \frac{\sum_{i=1}^{6} \left[\left(x_{i} - 4.8 \right)^{2} \cdot f_{i} \right]}{40 - 1} = \frac{62.4}{39} = 1.6$$

$$s = \sqrt{s^{2}} = \sqrt{1.6} \approx 1.3$$