

Control del Proceso Educativo Guía de Física Ley de Ohm y Joule IV Módulo Física

7. 5. 1.

Instituto San Lorenzo

Coordinación Enseñanza Media

Página 1 de 3 Rev. 02

Objetivo 1: Comprender las leyes de Ohm y de Joule.

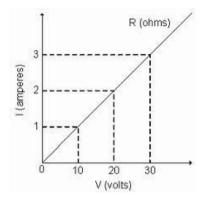
Instrucciones:

- 1) Analizar los conceptos y ejemplos presentados en la guía.
- 2) Contestar la guía de trabajo.
- 3) Comparar los resultados con la pauta de respuestas.
- 4) Guardar todas las guías en una carpeta, porque serán requeridas cuando se retorne a las clases presenciales y serán evaluadas
- 5) Las dudas serán contestadas en las clases virtuales, o en el correo de ciencias cienciasmediaisl@gmail.com indicando en "asunto" que es para física.

LEY DE OHM

La ley de Ohm es la relación existente entre conductores eléctricos y su resistencia que establece que la corriente que pasa por los conductores es proporcional al voltaje aplicado en ellos.

El físico alemán Georg Simon Ohm (1787-1854) fue el primero en demostrar experimentalmente esta relación.


Ohm descubrió al principio del siglo XIX que la corriente a través de un metal era directamente proporcional al voltaje o diferencia de potencial eléctrico por el metal. El descubrimiento de Ohm condujo a la idea de la resistencia en los circuitos.

La ley de Ohm expresada en forma de ecuación es $\mathbf{V} = \mathbf{R} \times \mathbf{I}$, donde \mathbf{V} es el potencial eléctrico en volts, \mathbf{I} es la corriente en amperes y \mathbf{R} es la resistencia en ohms.

Conductores óhmicos

Los conductores óhmicos son aquellos que cumplen la ley de Ohm, es decir, la resistencia es constante a temperatura constante y no dependen de la diferencia de potencial aplicado. Ejemplo: conductores metálicos.

Por lo tanto el gráfico V – I será como lo muestra la figura y su pendiente nos entrega la resistencia.

Conductores no óhmicos

Son aquellos conductores que no siguen la ley de Ohm, es decir, la resistencia varía dependiendo de la diferencia de potencial aplicado. Ejemplo: ciertos componentes de aparatos electrónicos como computadoras, teléfonos celulares, etc.

Ejemplos:

1) Calcular la resistencia de un artefacto eléctrico si al someterlo a una tensión de 12V circula una corriente de 20mA. Los miliamperes hay que convertirlos en amperes.

 $R = V/i = 12 V / 0.02 A = 600 \Omega$

2) Hállese la resistencia de una estufa que consume 3 amperios a una tensión de 120 voltios.

 $R = 120 V / 3 A = 40 \Omega$

Control del Proceso Educativo Guía de Física Ley de Ohm y Joule IV Módulo Física

5.

Instituto San Lorenzo

Coordinación Enseñanza Media

Página 2 de 3 Rev. 02

3) ¿Qué diferencia de potencial hay que aplicar a un reóstato de 30 ohmios para que circulen a través de él 5 amperios?

 $V = R \times I = 30 \text{ ohm } \times 5 \text{ A} = 150 \text{ V}$

LEY DE JOULE

La ley de Joule muestra la relación que existe entre el calor generado por una corriente eléctrica que fluye a través de un conductor, la corriente misma, la resistencia del conductor y el tiempo que la corriente existe. Esta ley lleva el nombre del físico británico James Prescott Joule.

Esta ley, a diferencia de la Ley de ohm que relaciona la corriente y la resistencia, también la relaciona con el tiempo y se expresa por medio de la fórmula:

 $Q = I^2 \times R \times t$, donde:

Q = es la cantidad de calor expresado en Julios (J)

I = es la corriente eléctrica que fluye a través de un conductor expresado en amperios (A) R = es el valor de la resistencia eléctrica presente en el conductor expresada en ohmios (R) t = es la cantidad de tiempo durante el cual esto ocurre expresado en segundos (s). La cantidad de calor también se puede expresar en calorías, donde 1 cal = 4,18 j.

Por lo tanto el calor es directamente proporcional a:

El cuadrado de la corriente.

La resistencia del conductor.

El tiempo que fluye la corriente por el conductor.

Cuando una corriente fluye a través de un conductor, la energía térmica se genera en él, debido a los choques que sufren con los átomos del material conductor por el que circulan. Los efectos de calentamiento de la corriente eléctrica dependen de tres factores:

La resistencia del conductor. Una mayor resistencia produce más calor.

El tiempo que fluye la corriente. Cuanto mayor es el tiempo, mayor es el calor producido.

A mayor corriente, más generación de calor.

Algunas aplicaciones de la ley de Joule

Calentador de agua (hervidor)

Ampolleta o foco incandescente (también genera luz)

Fusible (este se derrite, quema cuando la corriente sobrepasa un límite)

Plancha eléctrica

Cocina eléctrica

etc.

Ejemplos

1)A) ¿Cuál es el calor producido por una corriente de 2 amperios en una resistencia de 50 ohmios, durante 2 segundos?

 $Q = I^2 \times R \times t = 4A \times 50\Omega \times 2s = 400 \text{ J (joule) de calor.}$

B) ¿Cuántas calorías se producen?

1 cal = 4,18 j = 400 / 4,18 = 95,69 cal.

2) por un motor eléctrico circulan 5 a de corriente, al estar conectado a una tensión de 220 V ¿cuánto calor genera en 2 minutos?

Primero debemos calcular la resistencia = R = $V/I = 220 V / 5 A = 44 \Omega$

Entonces $Q = 25 \text{ A} \times 44 \Omega \times 120 \text{ s} = 132.000 \text{ J} \text{ o} 31.578,94 \text{ cal.}$

ISL

Control del Proceso Educativo Guía de Física Ley de Ohm y Joule IV Módulo Física

R

7. 5. 1.

Página 3 de 3

Rev. 02

Instituto San Lorenzo

Coordinación Enseñanza Media

GUÍA DE EJERCICIOS

- 1) ¿Qué diferencia de potencial hay que aplicar a un aparato de 380 ohmios para que circulen a través de él 15 amperios?
- 2) Si la tensión es de 230 V y el valor de la resistencia es igual a 100 Ω , ¿qué valor tiene la corriente que circula por el circuito?
- 3) Con la piel húmeda, la resistencia del cuerpo humano es de 2500 Ω . ¿Qué tensión sería suficiente para provocar en estas condiciones el paso de una corriente peligrosa de 30 mA por el cuerpo humano?
- 4) Calcular el calor producido por una corriente de 2A sobre una resistencia de 150 Ω , durante 7 segundos.
- 5) Calcular la resistencia del conductor, si sabemos que la corriente es de 1.25 A, el tiempo es de 4.5 segundos y el calor producido es de 1458 J.
- 6) Calcular durante cuánto tiempo está conectado un circuito, si la corriente es de 500 mA, la resistencia del conductor es de 125 Ω y el calor producido es de 31,25 J.
- 7) Por un conductor circulan 50 C de carga en un lapso de 5 minutos, el conductor está conectado a una tensión de 110 V. Calcular:
- A) la intensidad de la corriente
- B) la resistencia
- C) el calor generado en Joule y calorías
- 8) Una carga eléctrica puntual positiva, Q = 3,5 μ C y un punto p situado a una distancia r = 80 cm de Q
- A) ¿Cuál es la intensidad del campo eléctrico creado por Q en p?
- B) Si el valor de Q se duplica ¿cuál será el valor de E?
- C) si la carga sigue siendo de 3,5 µC y la distancia ahora es de 190 cm ¿cuál es el valor de E?
- D) Considere los datos originales, pero ahora la carga está bajo el agua, el valor de la constante dieléctrica del agua es de k = 80 ¿cuál es el valor de E?

Respuestas

1) 5700 V 2) 2,3 A 3) 75 V 4) 4200 J 5) 225 Ω

6) 1 s 7) A) 0,17 A B) 647, 05 Ω C) 5609,92 J o 1342,08 cal

8) A) 4,92x10⁴ N/C B) 9,8x10⁴ N/C C) 8,72 x10³ N/C D) 4,37x10⁻⁴