

P

7. 5. 1.

Instituto San Lorenzo

Rev. 01

Las moléculas orgánicas pueden ser de cuatro tipos y se basan en unos pocos elementos químicos

En la siguiente tabla (tabla 4) se describen varios aspectos en torno a los cuatro tipos principales de moléculas orgánicas. Estúdiala con detención y luego resuelve los problemas.

Clase de molécula	Elementos componentes	Descripción	Cómo reconocerlos	Función principal en los sistemas vivos
Carbohidratos	С, Н, О	En general su fórmula aproximada es (CH ₂ O) _n 1. Monosacáridos (azúcares sencillos), que son principalmente moléculas de cinco carbonos (pentosas), como la ribosa, o de seis carbonos (hexosas), como la glucosa y fructosa	Contar los átomos de C, H y O Buscar formas cíclicas, de pentágono o hexágono	Fuente de energía celular; constituyente de otros compuestos
		Disacáridos, que son dos monosacáridos unidos por un enlace glucosídico, como la maltosa y la sacarosa	Contar las unidades de azúcar	Componentes de otros compuestos, forma de azúcar de transporte en vegetales
		3. Polisacáridos, que se componen de muchos azúcares unidos por enlaces glucosídicos, como el glucógeno y la celulosa	Contar las unidades de azúcar	Forma de almacenamiento de energía (glucógeno en animales, almidón en vegetales); componente estructural de la pared celular de plantas ¹
Lípidos	C, H, O	Contienen menos O que los carbohidratos en relación con el C y el H 1. Grasas neutras. Combinación de glicerol con una a tres moléculas de ácidos grasos: Monoglicéridos, 1 ácido graso Diglicéridos, 2 ácidos grasos Triglicéridos, 3 ácidos grasos Si los ácidos grasos poseen enlaces dobles entre átomos de carbono (C==C), se dice que están insaturados;	Buscar el grupo glicerol en un extremo de la molécula: H H-Ç-O- H-C-O- H-C-O- H	Fuente de energía celular y forma de almacenamiento de energía En multicelulares, pueden funcionar como aislante térmico
		de lo contrario, están saturados 2. Fosfolípidos. Se componen de un grupo glicerol unido a uno o dos ácidos grasos y a una base orgánica que contiene fósforo	Buscar el glicerol y la cadena lateral que contiene fósforo y nitrógeno	Componente de membranas celulares
		3. Esteroides. Moléculas complejas que contienen átomos de carbono dispuestos en cuatro anillos entrelazados (tres ciclohexanos y un ciclopentano)	Buscar 4 anillos enlazados:	Algunos son hormonas, otros son colesterol, sales biliares y vitamina D; componentes de membranas celulares
		Carotenoides. Pigmentos anaranjados y amarillos, que cocsisten en unidades de isopreno	Buscar unidades isopreno H ₂ C=C-C=CH ₂	El retinal (importante en la fotorrecepción) y la vitamina A se forman a partir de carotenoides
Proteínas	C, H, O, N y por lo común, S	Uno o más polipéptidos (cadenas de aminoácidos) enrollados o plegados en formas características para cada proteína	Buscar unidades de aminoácidos unidas por enlaces C – N (enlace peptídico)	Estructural: citoesqueleto, ribosomas y membranas. Enzimática: transformaciones químicas, síntesis de nuevas moléculas, ruptura de moléculas, durante la digestión y procesamiento de

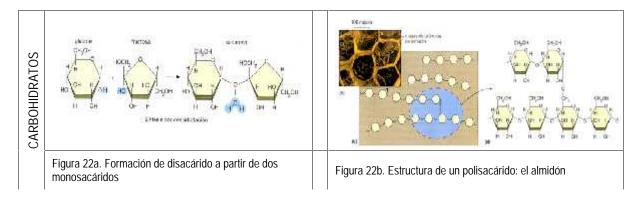
¹ Ver descripción en página 20

Escrito por AMM	Rev jefe Departamento AMM	Aprobación Contenido:	
		Coordinacion Enseñanza Media	Pág. 1 de 70

P

7. 5. 1.

Instituto San Lorenzo

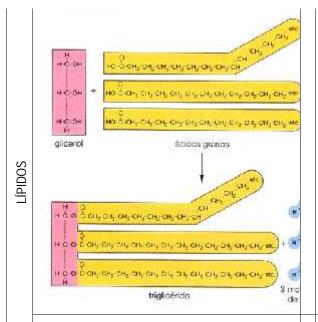

Rev. 01

		energía. Transporte: en la
		sangre (hemoglobina) y a
		través de membranas en la
		célula. Defensa: anticuerpos.
		Hormonal: señales entre
		células en el organismo.
		Receptora: detección de
		•
		estímulos en la superficie
		celular
		Coluidi

Clase de molécula	Elementos componentes	Descripción	Cómo reconocerlos	Función principal en los sistemas vivos
Ácidos nucleicos	C, H, O, N, P	El esqueleto se compone de grupos pentosa y fosfato alternados, de los cuales se proyectan las bases nitrogenadas. ADN: azúcar desoxirribosa y bases adenina, timina, citocina y guanina; ARN: azúcar ribosa y bases adenina, uracilo, citocina y guanina. Cada subunidad molecular, llamada nucleótido, consiste en una pentosa, un grupo fosfato y una base nitrogenada	Buscar un esqueleto de pentosa – fosfato. El ADN forma una doble hélice	Almacenamiento, transmisión y expresión de la información genética Control de la síntesis y la secuencia de todas las proteínas, enviando un mensaje desde el núcleo al citoplasma (ARN) Para el caso del ATP, funciona como la "moneda de intercambio" de la energía celular
	Existen nucleótidos que no estructuran ácidos nucleicos, sino que tienen 3 grupos fosfatos, ricos en energía: el ATP			

Actividad 11. Resuelve los siguientes problemas

 a) Los siguientes esquemas muestran varios aspectos de la organización de las moléculas orgánicas. Compáralos con las descripciones de la tabla 4 y anota en tu cuaderno una característica de cada tipo de molécula, que concluiste de tales dibujos.


Escrito por AMM	Rev jefe Departamento AMM	Aprobación Contenido:	
		Coordinacion Enseñanza Media	Pág. 2 de 70

P $\begin{bmatrix} 7. \\ 5. \\ 1. \end{bmatrix}$

Instituto San Lorenzo

Rev. 01

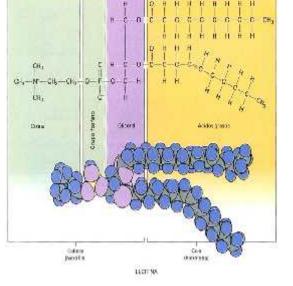


Figura 22c. Formación de un triglicérido a partir de un glicerol y tres ácidos grasos

Figura 22d. Estructura de un fosfolípido

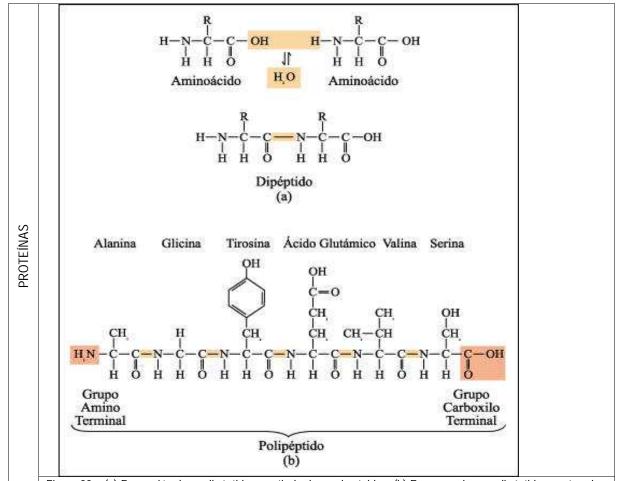
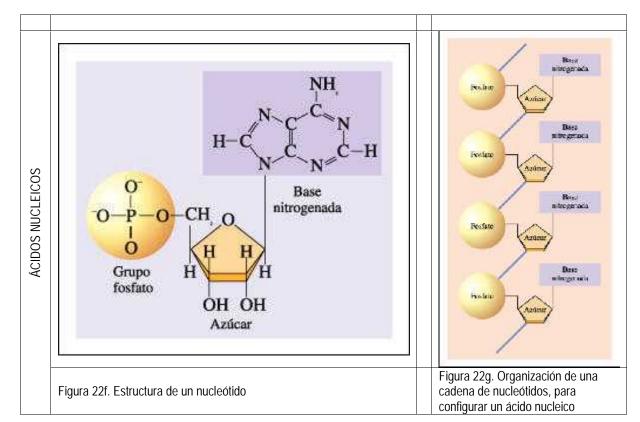
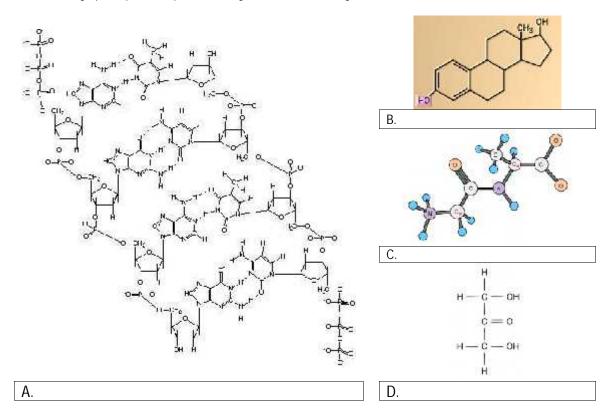


Figura 22e. (a) Formación de un dipéptido a partir de dos aminoácidos. (b) Esquema de un polipéptido, mostrando la diversidad de tipos de aminoácidos y los extremos terminales



P


7. 5. 1.

Instituto San Lorenzo

Rev. 01

b) Identifica el grupo al que corresponden las siguientes moléculas orgánicas:

Escrito por AMM	Rev jefe Departamento AMM	Aprobación Contenido:	
		Coordinacion Enseñanza Media	Pág. 4 de 70

ISL

Control del Proceso Educativo GUÍA DE ESTUDIO BIOLOGIA BIOMOLECULAS

P

7. 5. 1.

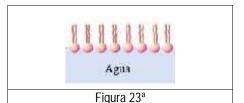
Rev. 01

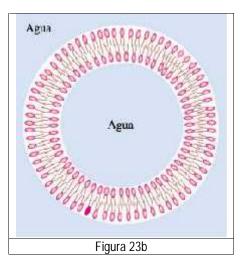
Instituto San Lorenzo

c) Tanto los polisacáridos como las proteínas son polímeros, vale decir, se componen de muchas subunidades encadenadas. Sin embargo, sólo en el caso de las proteínas el orden de tales subunidades es estrictamente controlado por la información contenida en el ADN, no así en el caso de los polisacáridos. Averigua por qué.

Los fosfolípidos poseen una organización que facilita la formación de estructuras con forma de capa

Para que una molécula pueda ser disuelta por el agua, debe compartir una característica con el agua: ser polar. El hecho de ser polar permite que las moléculas de agua establezcan puentes de hidrógeno "entre medio" de las moléculas que se desea diluir, separándolas y generando una solución acuosa. Cuando se piensa en un ejemplo de sustancia que no se diluye en agua, surge la idea del aceite o cualquier sustancia grasa. El problema es que los triglicéridos presentes en un aceite efectivamente tienen una porción polar, que tiene mucha afinidad con el agua. ¿Cómo se explica la conducta del aceite entonces?


Si vuelves a revisar las figuras 22c y 22d, se advierte que los triglicéridos y los fosfolípidos comparten una organización similar: los ácidos grasos quedan reunidos mediante una molécula de glicerol, la que en el caso de los fosfolípidos, además se asocia a un grupo fosfato. De esta manera, un fosfolípido posee una "cabeza" de glicerol y fosfato, adherida a una "cola" formada por dos ácidos grasos.



Hecho 1: la estructura de los fosfolípidos, ya descrita y esquematizada

Hecho 2: una parte de los fosfolípidos es polar

Hecho 3: pese al hecho 2, los fosfolípidos, al igual que los triglicéridos, no se disuelven en agua

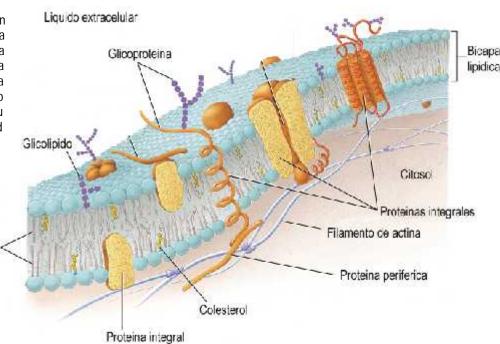
Evidencia experimental 1: Cuando se agrega una pequeña cantidad de moléculas de fosfolípidos en un recipiente con agua, los fosfolípidos se disponen en una capa superficial, tal como se muestra en la figura 23a. Evidencia experimental 2: Cuando se agrega una mayor cantidad de fosfolípidos en un recipiente con agua, los fosfolípidos adquieren la disposición mostrada en la figura 23b.

Preguntas:

- a) ¿Cuál es la porción polar de un fosfolípido? ¿Cuál sería apolar?
- b) ¿ Qué hace que un fosfolípido tienda a quedarse al lado de otro, en forma mas o menos paralela?
- c) Cuando se tienen gotitas esféricas de aceite en un vaso con agua (micelas de triglicéridos), espontáneamente se reunen formando una gota cada vez más grande. ¿Qué sucede si se revuelve el agua con la gota de aceite? ¿Cómo se explican los comportamientos del aceite en agua en base a las evidencias experimentales descritas?
- d) ¿Por qué los triglicéridos y los fosfolípidos no se disuelven en agua?

La capacidad de los fosfolípidos de formar bicapas determina la estructura y función de la membrana plasmática

P


7. 5. 1.

Instituto San Lorenzo

Rev. 01

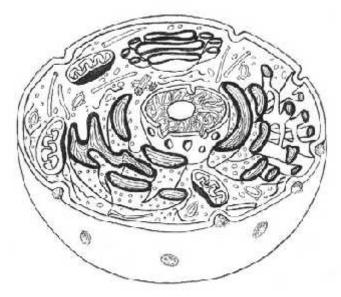
Tal como se explicó en previamente, la membrana plasmática es básicamente una bicapa de fosfolípidos, que junto a proteínas y carbohidratos, configura una barrera que regula el intercambio de sustancias entre la célula y su entorno. Tras desarrollar la actividad 12 debió quedar claro que el hecho que los fosfolípidos se asocien en bicapas es espontáneo y responde a las cualidades anfipáticas de tales moléculas, vale decir, poseen una región polar y otra apolar. Fosfolipidos-En la figura

24 se señalan los componentes de la membrana plasmática y el rol que le corresponde a cada uno.

	Fosfolípidos	Colesterol	Proteínas integrales	Glicolípidos y Glicoproteínas
Estructura	Moléculas anfipáticas, con cabeza hidrofílica y cola hidrofóbica. El tipo de fosfolípido que forma una membrana determina su permeabilidad y flexibilidad. Ver figura 22d	Es un esteroide, que se dispone entre los fosfolípidos, a la altura de la base de la cola. Pueden llegar a ser tan numerosos como los fosfolípidos	Suelen tener formas cilíndricas, que logran al atravesar la bicapa lipídica una o más veces. Son moléculas de alto peso molecular, formados por cientos de aminoácidos	Son carbohidratos unidos a proteínas o lípidos de la membrana formando una "nube superficial de azúcares" que en sus partes más densas se llama glicocálix
Función	La bicapa que organizan permite acomodar las demás moléculas de la membrana y servir como principal mecanismo de aislación de la célula	Aumentan la rigidez y disminuyen la permeabilidad de la membrana	Transporte de sustancias, por ej., iones. Activación de respuestas celulares (proteínas receptoras) Reconocimiento de sustancias	Reconocimiento con otras células o moléculas. También se cree que protegen y e impiden interacciones innecesarias
Dato interesante	El REL sólo sintetiza los fosfolípidos de la capa citosólica de la membrana. Los de la capa externa provienen de la interna	La presencia de colesterol en la membrana es exclusivo de las células eucariontes	Hay proteínas integrales que se fijan a la membrana mediante una porción hidrofóbica que sólo tiene afinidad con la parte central de la membrana	Uno de los glicocálix mejor estudiados pertenece a los glóbulos blancos

Escrito por AMM	Rev jefe Departamento AMM	Aprobación Contenido:	
		Coordinacion Enseñanza Media	Pág. 6 de 70

7. 5. 1.


Rev. 01

Instituto San Lorenzo

Actividad. Unidad y diversidad de membrana

- En el siguiente esquema de una célula animal, marca mediante flechas aquellas estructuras que están formadas de membrana
- La tabla 5 señala la composición lipídica aproximada de 3 tipos de membranas celulares. Compara los valores e hipotetiza una explicación frente a las diferencias

Tabla 5. Composición lipídica aproximada de diferentes membranas celulares

	Porcentaje de lípido total en peso			
	Membrana Membrana Membrar			
	plasmática del	de la	del retículo	
	glóbulo rojo mitocondria endoplá:			
Fosfolípidos	60	76	67	
Colesterol	23	3	6	
Glicolípidos	3	trazas	Trazas	
Otros	13	21	27	

Escrito por AMM	Rev jefe Departamento AMM	Aprobación Contenido:	
		Coordinacion Enseñanza Media	Pág. 7 de 70